		Area:	DRILLING INDUSTRY TRAINING			
GESTIÓN I	NTEGRAL	Title:	Curriculum Curso FRACTURA HIDRÁULICA y Objetivos de Aprendizaje Relacionados			
Date	Revision	Code	Prepared by	Approved by	Page	
6/8/2025	0	CCFH(Es)-GC-01	Guido Peli	Jacqueline Fernández	1 of 19	

JF CONSULTORES INTEGRALES ASOCIADOS & LOGÍSTICA PROTOCOLAR S.A.C.

Curriculum Curso FRACTURA HIDRÁULICA y Objetivos de Aprendizaje Relacionados

		Area:	DRILLING INDUSTRY TRAINING			
GESTIÓN I	NTEGRAL	Title:	Curriculum Curso FRACTURA HIDRÁULICA y Objetivos de Aprendizaje Relacionados			
Date	Revision	Code	Prepared by	Approved by	Page	
6/8/2025	0	CCFH(Es)-GC-01	Guido Peli	Jacqueline Fernández	2 of 19	

Contenido Programático General

- 1 . 0 Introducción. Visión general del curso
- 2 . 0 Contenido curricular
- 2 . 1 Introducción
- 2 . 2 Selección de candidatos
- 2 . 3 Mecánica de rocas
- 2 . 4 Simuladores
- 2 . 5 Microfracs y minifracs 1
- 2 . 6 Microfracs y minifracs 2
- 2 . 7 Fluidos de fractura
- 2 . 8 Aditivos para fluidos de fractura
- 2 . 9 Equipamiento de fractura
- 2 . 10 Diseño de operaciones
- 2 . 11 Evaluaciones operativas
- 2 . 12 Fracturas ácidas

		Area:	DRILLING INDUSTRY TRAINING			
GESTIÓN I	NTEGRAL	Title:	Curriculum Curso FRACTURA HIDRÁULICA y Objetivos de Aprendizaje Relacionados			
Date	Revision	Code	Prepared by	Approved by	Page	
6/8/2025	0	CCFH(Es)-GC-01	Guido Peli	Jacqueline Fernández	3 of 19	

1 . 0 Introducción. Visión general del curso

El objetivo principal de este diseño Curricular, es el de formar profesionales capaces de comprender, diseñar y supervisar integralmente operaciones de fracturamiento hidráulico, desde la preparación y caracterización de los yacimientos hasta la ejecución y evaluación de resultados en campo.

<u>Duración del curso</u>: El curso ha sido diseñado para ser impartido en <u>24 horas académicas</u>, manteniendo la calidad del mismo; sin embargo se debe destacar que algunos clientes podrían exigir que se extienda algunas horas adicionales.

<u>Para lograr la aprobación del curso</u> el cursante pasa si logra un <u>100% en todas las preguntas cruciales de seguridad</u> y un <u>80% o más de puntaje en todas las preguntas restantes</u> en la evaluación tanto de conocimiento como de habilidades con simulador o pozo de prácticas .

		Area:	DRILLING INDUSTRY TRAINING			
GESTIÓN I	NTEGRAL	Title:	Curriculum Curso FRACTURA HIDRÁULICA y Objetivos de Aprendizaje Relacionados			
Date	Revision	Code	Prepared by	Approved by	Page	
6/8/2025	0	CCFH(Es)-GC-01	Guido Peli	Jacqueline Fernández	4 of 19	

Este tipo de curso es especialmente recomendado para el siguiente personal:

Contratista	Operadora	Empresa de Servicios	Estudiantes
Ingenieros de completación,	Ingenieros de yacimientos, Ingenieros de producción, Coordinadores de desarrollo de campo, Gerentes de operaciones, Especialistas en optimización de pozos, Ingenieros de	Ingenieros de fractura hidraulica, Operadores de equipos de bombeo y control de presión, Técnicos de laboratorio de fluidos, Coordinadores de mantenimiento de equipos, Especialistas en registro y adquisición de datos, Supervisores de logística y materiales	Química, Mecánica o afines, Jóvenes profesionales en entrenamiento dentro de la industria energética. Participantes en

^{*} Se utilizan nombres comunmente aceptados. Se podrían contemplar otros titulos

		Area:	DRILLING INDUSTRY TRAINING			
GESTIÓN I	NTEGRAL	Title:	Curriculum Curso FRACTURA HIDRÁULICA y Objetivos de Aprendizaje Relacionados			
Date	Revision	Code	Prepared by	Approved by	Page	
6/8/2025	0	CCFH(Es)-GC-01	Guido Peli	Jacqueline Fernández	5 of 19	

2 . 0 Contenido curricular

2 . 1 Introducción

Sub-Módulos	А	ı	М	Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:
Objetivo de la estimulación				Se explica el propósito de las operaciones de estimulación en pozos de petróleo, orientadas a incrementar la productividad mediante la mejora de la permeabilidad o el flujo de hidrocarburos. Se detallan las condiciones en las que se justifica su aplicación.	Determinar cuándo aplicar técnicas de estimulación y establecer objetivos
Índice de productividad		ı		Se define y analiza el índice de productividad (PI), su cálculo y uso como indicador del rendimiento del pozo antes y después de la estimulación.	Calcular el PI y utilizarlo para evaluar la efectividad de una estimulación.
Daños de formación				linvasion de fluidos.	para mitigarlo.
Fractura vs. Matricial: tratamiento matricial		A	,	Se comparan la estimulación por fractura y la estimulación matricial, incluyendo ventajas, limitaciones y criterios de selección.	Escoger la técnica más adecuada según las características del pozo y la formación.
Estimulación matricial				daños cerca del pozo.	Diseñar e implementar un tratamiento de estimulación matricial efectivo.
Geometría de fluencia en fractura		1		Se presentan los modelos de flujo dentro de una fractura, la dirección de flujo y cómo la geometría influye en la eficiencia del tratamiento.	Interpretar la geometría de flujo y su impacto en el rendimiento de la fractura.
Régimen de flujo en fractura: resumen					Identificar el régimen de flujo predominante y ajustar el diseño del tratamiento en consecuencia.

		Area:		DRILLING INDUSTRY TRAINING	;	
GESTIÓN I	NTEGRAL	Title:	Curriculum Curso FRACTURA HIDRÁULICA y Objetivos de Aprendizaje Relacionados			
Date	Revision	Code	Prepared by	Approved by	Page	
6/8/2025	0	CCFH(Es)-GC-01	Guido Peli	Jacqueline Fernández	6 of 19	

2 . 1 Introducción (continúa)

Sub-Módulos	A I	М	Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:
Factor de conductividad adimensional	ı		Se explica el concepto de conductividad adimensional, su relación con la apertura y longitud de la fractura, y su uso para optimizar diseños.	Calcular y analizar el factor de conductividad para mejorar la productividad del pozo.
Radio efectivo de fractura				Estimar el radio efectivo de una fractura y emplearlo para evaluar el éxito del tratamiento.

2 . 2 Selección de candidatos

Sub-Módulos	Α	1	М	Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:
Introducción		ı			Identificar los criterios generales que determinan la viabilidad de un
					tratamiento de estimulación.
Proceso de selección –				Se explica cómo realizar un análisis económico preliminar	
parte 1: análisis				para evaluar la rentabilidad de un tratamiento de fractura,	Elaborar un análisis económico básico que permita determinar la
económico de la				considerando inversión, producción incremental y precios	factibilidad de un proyecto de estimulación.
estimulación				del crudo.	
Proceso de selección –				Se detalla el procedimiento para identificar pozos con mayor	
parte 2: proceso de		Μ		potencial de mejora, evaluando historial de producción,	IANIICAR CRITERIOS TECNICOS V NROGUCTIVOS NARA SELECCIONAR NOZOS CANDIDATOS
selección de		IVI		condiciones geológicas y operativas.	con alto potencial de mejora.
candidatos				condiciones geologicas y operativas.	
Proceso de selección –				Se enseña a estimar la producción futura después de la	
parte 3: determi-				estimulación, utilizando proyecciones basadas en datos	il alciliar el notencial productivo nost-estimiliación para sustentari
nación de potencial				históricos y modelos de flujo.	decisiones de inversión.
post estimulación				inistoricos y modelos de najo.	

		Area:		DRILLING INDUSTRY TRAINING	,	
GESTIÓN I	NTEGRAL	Title:	Curriculum Curso FRACTURA HIDRÁULICA y Objetivos de Aprendizaje Relacionados			
Date	Revision	Code	Prepared by	Approved by	Page	
6/8/2025	0	CCFH(Es)-GC-01	Guido Peli	Jacqueline Fernández	7 of 19	

(continúa)

2 . 2 Selección de candidatos

Sub-Módulos	Α	ı	М	Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:
Análisis nodal – parte 1: evaluación de potencial				Idiagnosticar limitaciones de fluio en el sistema de	[Realizar un analisis nodal para identificar cuellos de botella y optimizar la
Análisis nodal – parte 2: punto de operación. Flujo estable		M		producción y su relación con la estabilidad del flujo.	Determinar el punto óptimo de operación para mantener un flujo estable y eficiente después del tratamiento.
Análisis nodal - ejemplo: parte 1: skin				Se presenta un caso práctico de análisis nodal para cuantificar el efecto del skin en la productividad del pozo.	Evaluar y cuantificar el impacto del skin sobre la producción.
Análisis nodal - ejemplo: parte 2: skin (daño) – caso K =					Aplicar cálculos de skin en casos reales con distintas condiciones de permeabilidad.
Análisis económico (net present value = NPV) – parte 1: frac net present value		1		útil del pozo.	tratamientos de estimulación.
Tipo de frac vs. permeabilidad		•		Se relaciona el tipo de fractura hidráulica más adecuado con la permeabilidad de la formación, optimizando resultados y costos.	Seleccionar el tipo de tratamiento de fractura apropiado según las características de permeabilidad de la formación.

		Area:		DRILLING INDUSTRY TRAINING	;	
GESTIÓN I	NTEGRAL	Title:	Curriculum Curso FRACTURA HIDRÁULICA y Objetivos de Aprendizaje Relacionados			
Date	Revision	Code	Prepared by	Page		
6/8/2025	0	CCFH(Es)-GC-01	Guido Peli	Jacqueline Fernández	8 of 19	

2 . 3 Mecánica de rocas

Sub-Módulos	A	- 1	M	Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:
Definición de esfuerzo				ltinos (axial radial tangencial) y cómo se manitiestan en la	Interpretar los esfuerzos presentes en un yacimiento y su influencia en el diseño de la fractura.
Módulo de Young		ı		Se describe el Módulo de Young, su significado físico y la forma de determinarlo en laboratorio o mediante registros de pozo.	il alcillar v litilizar el Modillo de voling nara estimar la respilesta elastica del
Relación de Poisson		ı		Se presenta la relación de Poisson, su importancia en la deformación lateral y su influencia en el comportamiento mecánico de la formación.	iDeterminar la relación de Poisson y aplicaria en modelos de tractural
Determinación de propiedades vía perfiles				Se enseña a obtener propiedades mecánicas de la roca a partir de perfiles geofísicos, correlacionando datos de laboratorio y registros.	Interpretar registros para estimar parámetros mecánicos de la formación.
Cambio en los esfuerzos función por cambio en la presión poral		A			Evaluar los efectos de la presión poral sobre la estabilidad y propagación de la fractura.
Toughness		A		Se introduce el concepto de tenacidad (fracture toughness) y su papel en la resistencia de la roca a la propagación de fracturas.	Incorporar el valor de tenacidad en el diseño y modelado de fracturas.
Presión durante la fractura			Se detalla el comportamiento de la presión durante el bombeo, identificando fases y patrones característicos.	Interpretar curvas de presión para evaluar el desarrollo de la fractura.	
Presión neta		I		Se define la presión neta como la diferencia entre la presión interna de la fractura y la presión de cierre, y su rol en la propagación.	Calcular y ajustar la presión neta para optimizar la apertura y longitud de la fractura.

		Area:		DRILLING INDUSTRY TRAINING	,		
GESTIÓN I	NTEGRAL	Title:	Curriculum Curso FRACTURA HIDRÁULICA y Objetivos de Aprendizaje Relacionados				
Date	Revision	Code	Prepared by	Page			
6/8/2025	0	CCFH(Es)-GC-01	Guido Peli	Jacqueline Fernández	9 of 19		

2 . 3 Mecánica de rocas (continúa)

Sub-Módulos	A	. 1	М	Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:	
Gradientes de propagación y cierre				Se enseña a determinar los gradientes requeridos para iniciar, propagar y cerrar una fractura hidráulica.	Estimar gradientes y aplicarlos en el control de la operación.	
Tip effects				Se describen los efectos que ocurren en la punta de la fractura y cómo influyen en su crecimiento.	Reconocer y considerar los tip effects en el modelado de fracturas.	
Dilatancia (Fracpro)		ı		Se explica el fenómeno de dilatancia y su interpretación en simuladores como Fracpro.	Incorporar la dilatancia en la calibración de modelos de simulación.	
Fluid lag (retraso del fluido)		I	ı		Se analiza el fenómeno de retraso del fluido respecto a la punta de la fractura y sus implicaciones.	Evaluar y mitigar los efectos del fluid lag en el tratamiento.
New wellbore effects (tortuosidades)					Detectar y corregir problemas de tortuosidad en el diseño y ejecución de fracturas.	
Presión de ruptura					Estimar la presión de ruptura y utilizarla como parámetro de control en la operación.	
Multi-fracturas				Se presentan los casos de múltiples fracturas simultáneas y su modelado.	Diseñar y evaluar escenarios con múltiples fracturas.	
Poroelasticidad		V		Se introduce el concepto de poroelasticidad y su influencia en el comportamiento mecánico de la formación.	Incorporar la poroelasticidad en el análisis de esfuerzos y diseño de fracturas.	
Valores típicos de propiedades de mecánica de la roca					Utilizar valores de referencia para estimaciones preliminares y validación de datos.	
Dirección (acimut) de las fracturas		ı			Predecir la dirección de propagación de la fractura para optimizar el posicionamiento de pozos.	

		Area:		DRILLING INDUSTRY TRAINING	,		
GESTIÓN I	NTEGRAL	Title:	Curriculum Curso FRACTURA HIDRÁULICA y Objetivos de Aprendizaje Relacionados				
Date	Revision	Code	Prepared by	Prepared by Approved by			
6/8/2025	0	CCFH(Es)-GC-01	Guido Peli	Jacqueline Fernández	10 of 19		

2 . 4 Simuladores

Sub-Módulos	А	1	М	Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:	
Modelos				Se describen los diferentes tipos de modelos de simulación	Seleccionar el modelo de simulación más adecuado según los objetivos del	
iviouelos				para fracturas hidráulicas, sus fundamentos y aplicaciones.	diseño.	
P3D – listado		Μ	1	Se presenta una comparación de modelos pseudo-3D (P3D),	Comparar y elegir modelos P3D adecuados a condiciones específicas de	
comparativo		IVI		destacando ventajas, limitaciones y criterios de uso.	operación.	
Modelos				Se explica el funcionamiento y aplicaciones de los modelos	Implementar modelos 3D para un análisis detallado del comportamiento	
completamente 3D				tridimensionales completos en simulación de fracturas.	de la fractura.	
Eficiencia del fluido				Se detalla cómo evaluar la eficiencia del fluido de fractura y	Calcular y mejorar la eficiencia del fluido para optimizar el tratamiento.	
Litericia dei fidido				su impacto en la propagación y apertura.	Calculat y mejorat la eficiencia dei fidido para optimizar el tratamiento.	
Convección				Se describe el proceso de convección en fluidos de fractura y	Incorporar consideraciones de convección en el diseño de operaciones.	
Convection		1		su influencia en la distribución de temperatura.	inicorporal consideraciones de convección en el diseño de operaciones.	
Tortuosidades		ı		Se explica cómo las tortuosidades afectan el bombeo y la	Identificar y minimizar problemas de tortuosidad.	
Tortuosidades					geometría de la fractura.	identificar y minimizar problemas de tortuosidad.
Multifracturas				Se presentan escenarios y estrategias para modelar fracturas	Planificar y simular operaciones con multifracturas.	
ividitiii actulas	iviuitiiracturas			múltiples.	rialifically simulal operaciones con multifiacturas.	

2 . 5 Microfracs y minifracs - 1

Sub-Módulos	A I	М	Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:
Microfracs				Diseñar e interpretar pruebas de microfractura para obtener parámetros de diseño.
Microfracs – interpretación con función 'G' diseño de ensayo	M		Se enseña a interpretar datos de microfracs usando la función G y a diseñar el ensayo.	Aplicar la función G en la interpretación de microfracturas.

		Area:		DRILLING INDUSTRY TRAINING	,		
GESTIÓN I	NTEGRAL	Title:	Curriculum Curso FRACTURA HIDRÁULICA y Objetivos de Aprendizaje Relacionados				
Date	Revision	Code	Prepared by	Prepared by Approved by			
6/8/2025	0	CCFH(Es)-GC-01	Guido Peli	Jacqueline Fernández	11 of 19		

2 . 5 Microfracs y minifracs - 1

(continúa)

Sub-Módulos	Α	ı	М	Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:	
Determinación del modelo				Se explica cómo seleccionar el modelo más apropiado en función de los resultados de microfracturas.	Escoger el modelo de fractura óptimo a partir de datos reales.	
Determinación del ISIP					Se enseña a identificar la presión instantánea de cierre (ISIP) y su importancia.	Calcular e interpretar la ISIP en pruebas de minifrac.
Determinación de la eficiencia		NΛ		Se presenta el cálculo de eficiencia a partir de datos de pruebas de fractura.	Estimar la eficiencia de un tratamiento y proponer ajustes.	
Resumen de las 3 partes esenciales del minifrac	M		Se resumen los pasos clave: determinación de ISIP, eficiencia y modelo.	Integrar los tres pasos para realizar un análisis completo de minifrac.		
Minifracs – interpretación por macheo de curvas			Se enseña a interpretar minifrac mediante el ajuste de curvas de presión y tiempo.	Aplicar técnicas de curve matching para validar diseños.		

2 . 6 Microfracs y minifracs - 2

Sub-Módulos	Α	ı	М	Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:	
Agentes de sostén (apuntalante)		I			Se presentan los tipos de agentes de sostén, sus propiedades y aplicaciones.	Seleccionar el agente de sostén adecuado para cada operación.
Conductividad				Se describe cómo se mide y evalúa la conductividad de una fractura con agente de sostén.	Calcular y analizar la conductividad para optimizar la producción.	
Confinamiento				Se explica el papel del confinamiento de agente de sostén en la estabilidad de la fractura.	Diseñar operaciones considerando el confinamiento óptimo.	
Calidad de las arenas de fractura – normas API				Se presentan especificaciones API para arenas de fractura.	Verificar la calidad de arenas conforme a normas API.	

		Area:		DRILLING INDUSTRY TRAINING	;		
GESTIÓN I	NTEGRAL	Title:	Curriculum Curso FRACTURA HIDRÁULICA y Objetivos de Aprendizaje Relacionados				
Date	Revision	Code	Prepared by Approved by Page				
6/8/2025	0	CCFH(Es)-GC-01	Guido Peli	Jacqueline Fernández	12 of 19		

2 . 6 Microfracs y minifracs - 2

(continúa)

Sub-Módulos	Α	ı	М	Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:
Efecto de la concentración				Se describe la relación entre concentración de agente y conductividad.	
Empotramiento				Se explica el fenómeno de incrustación del agente de sostén en la formación.	Prevenir y controlar el empotramiento en operaciones reales.
Spalling				Se detalla el desprendimiento de partículas de la formación dentro de la fractura.	Detectar y mitigar problemas de spalling.
Granulometría (mesh size)		I		Se enseña cómo elegir el tamaño de partícula adecuado.	Seleccionar la granulometría óptima para cada escenario.
Selección del agente de sostén				agente de sostén.	Aplicar critérios integrales en la selección de agente.
Arena resinada				Se presentan propiedades y aplicaciones de la arena resinada.	Incorporar arena resinada en diseños para control de producción de arena.
Bridging				Se describe la obstrucción por acumulación de agente.	Identificar y prevenir el bridging en fracturas.

2 . 7 Fluidos de fractura

Sub-Módulos	A I M		El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:
Requerimientos			Se detallan los requisitos que debe cumplir un fluido de fractura.	Definir especificaciones técnicas para fluidos de fractura.
Viscosidad	M	1	Se explica el concepto de viscosidad y su importancia en el transporte de agente.	Medir y ajustar viscosidad de fluidos en campo.
Pérdida de filtrado			Se describe el fenómeno de pérdida de filtrado y su impacto.	Minimizar la pérdida de filtrado con técnicas y aditivos adecuados.

		Area:	Area: DRILLING INDUSTRY TRAINING				
GESTIÓN I	NTEGRAL	Title:	Curriculum Curso FRACTURA HIDRÁULICA y Objetivos de Aprendizaje Relacionados				
Date	Revision	Code	Prepared by	Approved by	Page		
6/8/2025	0	CCFH(Es)-GC-01	Guido Peli	Jacqueline Fernández	13 of 19		

2 . 7 Fluidos de fractura (continúa)

Sub-Módulos	Α	ı	M	Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:
Eficiencia del fluido				Se enseña a evaluar la eficiencia del fluido en términos de transporte y colocación de agente.	Optimizar la eficiencia del fluido durante el tratamiento.
Residuos				Se explica la generación de residuos en el fluido y su impacto en la formación.	Reducir y gestionar residuos para minimizar daño.
Tipos de fluido de fractura		ļ		Se describen las principales familias de fluidos.	Seleccionar el tipo de fluido más apropiado.
Geles lineales				Se presenta la composición y uso de geles lineales.	Preparar y utilizar geles lineales en fractura hidráulica.
Geles crosslinkeados, base agua (guar, HPG, CMHG)				Se explica la formulación y propiedades de geles crosslinkeados base agua.	Preparar geles crosslinkeados y controlar su desempeño.
Tipos de activadores (crosslink)				Se describen los distintos activadores químicos.	Seleccionar activador adecuado según condiciones del pozo.
Efectos de temperatura		Α		Se enseña cómo la temperatura afecta la viscosidad y estabilidad de fluidos.	Ajustar diseño de fluidos a variaciones térmicas.
Control de calidad de geles crosslinkeados				Se detalla el procedimiento para verificar calidad de geles en campo.	Implementar control de calidad de geles antes de su uso.
Geles base				Se presentan formulaciones base para distintos geles.	Preparar geles base según especificaciones.
Efecto de daño en cara de la fractura				Se explica cómo el fluido puede causar daño a la formación.	Minimizar daño en cara de fractura mediante selección adecuada de fluido.
Fluidos energizados		1		Se describen los fluidos energizados y su uso para mejorar limpieza y producción.	Diseñar tratamientos con fluidos energizados.
Fluidos espumados				Se presenta el uso de espuma como fluido portador.	Preparar y aplicar espumas en fracturas.

		Area:		DRILLING INDUSTRY TRAINING	i		
GESTIÓN I	NTEGRAL	Title:	Curriculum Curso FRACTURA HIDRÁULICA y Objetivos de Aprendizaje Relacionados				
Date	Revision	Code	Prepared by	Approved by	Page		
6/8/2025	0	CCFH(Es)-GC-01	Guido Peli	Jacqueline Fernández	14 of 19		

2 . 7 Fluidos de fractura (continúa)

Sub-Módulos	Α	A I M		Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:	
Fluidos viscoelásticos						
(surfactantes vs.				Se comparan fluidos viscoelásticos de diferentes bases.	Seleccionar fluido viscoelástico más eficiente.	
micropolímeros)						
Geles base		ı				
surfactantes		ı		Se explica composición y uso de VES.	Formular y aplicar VES en campo.	
viscoelásticos (VES)						
Geles base				So proceptan características	Se presentan características y usos de geles micropolímeros.	Emplear geles micropolímeros en fracturas específicas.
micropolímeros				Je presentan características y usos de geles micropolímieros.	Emplear geles micropolinieros en nacturas especificas.	

2 . 8 Aditivos para fluidos de fractura

Sub-Módulos	А	ı	М	Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:				
Estabilizadores de				Se explica el uso de aditivos para prevenir la hinchazón y	Seleccionar y aplicar estabilizadores adecuados para proteger la formación.				
arcillas				migración de arcillas en la formación.					
Buffers		Sa presenta el uso de surfactantes para mejorar la limpieza y	Ajustar el pH de fluidos mediante el uso de buffers.						
Bullets			М					Iffuido de fractura.	
Surfactantes					Se presenta el uso de surfactantes para mejorar la limpieza y	Incorporar surfactantes para entimizar la recuperación de hidrocarbures			
Surfactantes		IVI		reducir tensiones interfaciales.	incorporar sarractantes para optimizar la recuperación de marocarbaros.				
Ruptores				Se enseña el papel de los ruptores para degradar polímeros y	Dosificar y aplicar ruptores para minimizar daño a la formación.				
(quebradores)				Itacilitar el fillio nost-tractura					
Reductores de filtrado				Se describe cómo aditivos específicos reducen la pérdida de	Seleccionar y usar reductores de filtrado en diseños de fractura.				
Reductores de filtrado				filtrado.	Seleccional y usar reductores de intrado en diseños de fractura.				
Dactorioidas		ı		Se presenta el uso de bactericidas para controlar el	Anlicar hactaricidas do manora cogura y efectiva				
Bactericidas		I		crecimiento microbiano en fluidos.	Aplicar bactericidas de manera segura y efectiva.				

		Area:	DRILLING INDUSTRY TRAINING				
GESTIÓN I	NTEGRAL	Title:	Curriculum Curso FRACTURA HIDRÁULICA y Objetivos de Aprendizaje Relacionados				
Date	Revision	Code	Prepared by	Approved by	Page		
6/8/2025	0	CCFH(Es)-GC-01	Guido Peli	Jacqueline Fernández	15 of 19		

2 . 8 Aditivos para fluidos de fractura

(continúa)

Sub-Módulos	ulos A I M							Objetivos de Aprendizaje y Lineamientos para la Evaluación						
				El Instructo	or impartirá estos conoc	imientos:				El Cursante	será capaz de:			
Otros aditivos			Se listan	aditivos	complementarios	y sus	funciones	Identificar	y seleccionar	aditivos	adicionales	según	necesidades	de
Otros autivos			específicas.					operación.						

2 . 9 Equipamiento de fractura

Sub-Módulos	Α	- 1	М	Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:	
Esquema de un blender				Se detalla la disposición y componentes de un blender para mezcla de fluidos.	Operar y supervisar el uso del blender en campo.	
Unidad de hidratación		ı		lhidratación.	Manejar parametros de operación en unidades de hidratación.	
Piletas		ı		Se describe el uso de piletas para almacenamiento y control de fluidos.		
Transporte de agente de sostén				Se presentan métodos y equipos para transportar agente de sostén al pozo.	Coordinar el transporte eficiente y seguro del agente de sostén.	
Fracturadores					Operar y monitorear equipos fracturadores.	
Nitrogenero				Se describe el uso de unidades de nitrógeno en fracturas energizadas.	Integrar nitrógeno en diseños de fluidos energizados.	
Frac van		Α	Α		Se presenta el vehículo de control de operaciones de fractura.	Coordinar operaciones desde un frac van.
Armado de línea				Se explica el montaje de líneas de alta presión.	Realizar armado de línea siguiendo protocolos de seguridad.	
Líneas de alta presión				Se detalla diseño y materiales para líneas de alta presión.	Inspeccionar y mantener líneas de alta presión.	

		Area:		DRILLING INDUSTRY TRAINING	RY TRAINING		
GESTIÓN I	NTEGRAL	Title:	Curriculum Curso FRACTURA HIDRÁULICA y Objetivos de Aprendizaje Relacionados				
Date	Revision	Code	Prepared by	Approved by	Page		
6/8/2025	0	CCFH(Es)-GC-01	Guido Peli	Jacqueline Fernández	16 of 19		

2 . 9 Equipamiento de fractura

(continúa)

Sub-Módulos	A I M		М	Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:
Cabezas de fractura				Se describe el equipo instalado en el pozo para la fractura.	Instalar y operar cabezas de fractura.
Tree saver		Α		Se explica el uso del tree saver para proteger la cabeza del pozo.	Utilizar tree saver correctamente en operaciones.
Tapones y packers				Se presentan dispositivos de aislamiento de zonas.	Seleccionar y colocar tapones y packers en tratamientos multietapa.

2 . 10 Diseño de operaciones

Sub-Módulos	Α	ı	М	Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:
Fracturas convencionales (agua, combustible)				Se describe el diseño del blender y su integración en operaciones.	Configurar blenders para distintos tipos de tratamientos.
Fracturas con espuma / fluidos energizados				Se explica el diseño de fracturas con espuma o fluidos energizados.	Diseñar tratamientos energizados optimizados.
Fracturas convencionales (fluido inflamable – metanol)		I		Se describe el uso de metanol como fluido en fracturas convencionales.	Implementar medidas de seguridad y diseño en fracturas con metanol.
Fracturas en etapas				Se enseña la metodología para fracturar múltiples zonas en un pozo.	Planificar y ejecutar fracturas en etapas.
Entradas limitadas				Se explica la técnica de limitar entradas para controlar crecimiento de fractura.	Aplicar entradas limitadas para mejorar distribución del agente de sostén.
Tip screen out				Se describe el fenómeno de obstrucción en la punta de la fractura.	Diseñar para prevenir o inducir tip screen out según objetivos.

		Area:	DRILLING INDUSTRY TRAINING			
GESTIÓN I	GESTIÓN INTEGRAL		Curriculum Curso FRACT	URA HIDRÁULICA y Objetivos de <i>A</i>	Aprendizaje Relacionados	
Date	Revision	Code	Prepared by	Approved by	Page	
6/8/2025	0	CCFH(Es)-GC-01	Guido Peli	Jacqueline Fernández	17 of 19	

2 . 10 Diseño de operaciones

(continúa)

Sub-Módulos	Α	I M	Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:
Cierre forzado			Se presenta la técnica de cierre acelerado de fractura.	Implementar cierre forzado para control de crecimiento.
Problema de producción de agente de sostén		1	Se analiza la producción no deseada de agente post- tratamiento.	Aplicar técnicas para reducir producción de agente.
Fibras propnet - Schlumberger			Se describe el uso de fibras propnet como control de flujo.	Integrar fibras propnet en el diseño de fracturas.
Flexand - BJ			Se explica la tecnología Flexand y su aplicación.	Diseñar tratamientos usando Flexand para control de arena.
Sand wedge - Halliburton			Se presenta el aditivo Sand Wedge y su función.	Implementar Sand Wedge en fracturas para mayor control.
Arena resinada			Se describe nuevamente el uso de arena resinada en etapas de diseño.	Seleccionar arena resinada según requerimientos.
Pipeline frac		ı	Se explica la técnica de pipeline fracturing.	Ejecutar pipeline frac de manera eficiente.
Water frac			Se describe el uso de agua como fluido principal de fractura.	Diseñar y aplicar water frac en formaciones adecuadas.
Control de crecimiento de fractura			Se presentan técnicas para limitar extensión no deseada de fractura.	Implementar medidas de control de crecimiento.
Control y eliminación de tortuosidades		۸	Se describe cómo prevenir y corregir tortuosidades.	Aplicar soluciones para eliminar tortuosidades.
Frac pack – fractura para control de arena		А	Se explica la técnica de fractura combinada con empaque de grava.	Diseñar frac pack para control de producción de arena.

		Area:	DRILLING INDUSTRY TRAINING			
GESTIÓN I	GESTIÓN INTEGRAL		Curriculum Curso FRACT	Curriculum Curso FRACTURA HIDRÁULICA y Objetivos de Aprendizaje Relacionados		
Date	Revision	Code	Prepared by	Approved by	Page	
6/8/2025	0	CCFH(Es)-GC-01	Guido Peli	Jacqueline Fernández	18 of 19	

2 . 10 Diseño de operaciones

(continúa)

Sub-Módulos	A I	M	Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:
Punzados			Se presenta el método de perforación de revestimiento para acceso a la formación.	Planificar y ejecutar punzados adecuados.
Reunión de seguridad	-		Se enfatiza la importancia de la reunión previa a operaciones.	Organizar reuniones de seguridad efectivas.

2 . 11 Evaluaciones operativas

Sub-Módulos	Α	ı	М	Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:
Objetivo de la evaluación				Se explica la finalidad de evaluar operaciones de fractura.	Definir parámetros clave para evaluar resultados.
Evaluación mecánica				Se enseña cómo analizar el desempeño mecánico de la fractura.	Realizar evaluaciones mecánicas post-tratamiento.
Nolte - Smith		I		Se describe el método de análisis Nolte-Smith para interpretación de datos.	Aplicar método Nolte-Smith en análisis de fractura.
Evaluación de producción				Se presenta la metodología para medir impacto productivo del tratamiento.	Analizar producción y determinar efectividad del fracturamiento.
Conclusión				Se resumen hallazgos y se plantean recomendaciones.	Elaborar conclusiones y propuestas de mejora en fracturas futuras.

2 . 12 Fracturas ácidas

Sub-Módulos	A I	М	Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:
Objetivos de la evaluación	Α		Se explican las metas de aplicar fracturas ácidas.	Definir objetivos y criterios de éxito en fracturas ácidas.

		Area:	DRILLING INDUSTRY TRAINING			
GESTIÓN I	GESTIÓN INTEGRAL		Curriculum Curso FRACT	URA HIDRÁULICA y Objetivos de <i>A</i>	Aprendizaje Relacionados	
Date	Revision	Code	Prepared by	Approved by	Page	
6/8/2025	0	CCFH(Es)-GC-01	Guido Peli	Jacqueline Fernández	19 of 19	

2 . 12 Fracturas ácidas (continúa)

Sub-Módulos	А	. 1	N	Tópicos El Instructor impartirá estos conocimientos:	Objetivos de Aprendizaje y Lineamientos para la Evaluación El Cursante será capaz de:
Definición de candidatos				Se enseña cómo seleccionar pozos candidatos para fractura ácida.	Identificar y priorizar candidatos óptimos.
Ácido vs. agente de sostén			ı	Se compara el uso de ácido frente a agentes de sostén.	Elegir entre ácido y agente de sostén según condiciones.
Conductividad y longitud			l	Se describe cómo evaluar la conductividad y longitud de fracturas ácidas.	Calcular y optimizar estos parámetros.
Elección del fluido				Se presenta la selección de fluidos ácidos adecuados.	Escoger fluido ácido óptimo para cada formación.
Mecanismo de fractura ácida				Se explica cómo el ácido disuelve y crea canales en la formación.	Diseñar fracturas ácidas efectivas según mecanismo.
Control del leak off		I	Se enseña cómo minimizar el leak off en tratamientos ácidos.	Implementar medidas de control de filtrado en fracturas ácidas.	
Canalización por viscosidad (fingering)			Se describe la canalización desigual del ácido por diferencias de viscosidad.	Detectar y reducir el fingering en tratamientos ácidos.	
Enfriamiento (cooldown)				Se explica el enfriamiento de la formación antes de la inyección de ácido.	Implementar estrategias de cooldown para mejorar eficiencia.
Resumen del capítulo de fractura ácida				Se integran conceptos clave del capítulo.	Aplicar de manera global los principios de fractura ácida.